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Abstract. KCuCl3 is an S = 1/2 magnetic insulator with a singlet ground state and a finite spin
excitation gap. Above the gap, dispersive triplet excitation modes propagate in the whole reciprocal
space. From single-crystal inelastic neutron investigations the three-dimensional coupling scheme
is rationalized in the framework of a dimer Heisenberg model, and related to the structural features
of KCuCl3. The experimental and theoretical characterization presented completes earlier works
on the compound under investigation, providing also higher-order expressions for the singlet–triplet
dispersion relation. The latter may also be of relevance for the parent quantum systems TlCuCl3
and NH4CuCl3, albeit at different coupling ratios with respect to KCuCl3.

1. Introduction

Low-dimensional S = 1/2 antiferromagnets are unconventional spin systems dominated by
quantum fluctuations. Usual model approaches—like spin-wave theory based on a staggered
Néel ground state—prove to be inadequate to describe the behaviour of intrinsically quantum
disordered magnetic insulators. However, in the case where the coupling scheme features a
strong imbalance in the exchange constants, the essential magnetic properties can be captured
by a dimer model [1]. This approach considers the dominant antiferromagnetic (AF) pair
correlation exactly, naturally providing a singlet nonmagnetic ground state and gapped singlet–
triplet excitations. Both properties are common to several S = 1/2 quantum systems, like
alternating chains, even-leg ladders and dimer compounds in general. The additional weak
interdimer interactions distinctive of each given system are considered perturbatively in the
dimer model,

H = −J
∑
〈i〉

Si1Si2

︸ ︷︷ ︸
H(0)

−
∑

〈ij,µν〉
Jij,µνSiµSjν

︸ ︷︷ ︸
H(1)

(1)

where H(0) accounts for the isolated dimers, and H(1) considers interactions between
neighbouring dimers 〈ij〉, generally mediated by the spins µ = {1, 2}, ν = {1, 2} at sites
i and j , respectively. At first order, H(1) yields Bloch-like triplet waves which can propagate
from dimer i to dimer j according to the specific coupling scheme. Their energy shows weak
dispersive behaviour across the localized limit |J |, with the absolute minimum determining
the gap. From an experimental point of view, static measurements (χ , M) and local probes
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(NMR, EPR) can monitor the gap accurately but are less conclusive in the determination of the
complete excitation spectrum. This information is nevertheless essential to clarify the nature of
such unconventional spin systems, as exemplified for the S = 1/2 AF compound (VO)2P2O7,
which was originally proposed to be a realization of a two-leg ladder but turned out to be an
alternating-chain compound after comprehensive neutron investigations [2].

The requirement of direct and complete access to both time and space spin–spin
correlations promotes inelastic neutron scattering (INS) as the definitive technique to
characterize magnetic systems in general, and spin-gap compounds in particular. In this
contribution, INS results for high-quality single crystals of KCuCl3 are rationalized in the
context of a dimer Heisenberg model, and related to the structural properties of the specific
system under investigation. The paper is organized as follows. In section 2 the interplay
between the crystal structure of KCuCl3 and the magnetic interactions among the Cu2+

ions in the unit cell is presented; in section 3 detailed model expectations are developed
in accordance with the proposed exchange coupling scheme. Analytical expressions for the
spin–spin correlation function S(κ, ω) are presented. The theoretical discussion is supported
in section 4 by conclusive INS measurements, which confirm the validity of the microscopic
model approach completing at the same time the experimental picture of KCuCl3. As an
improvement to previous neutron investigations, all measurements have been performed on
high-resolution spectrometers, allowing accurate quantitative determination of the model
parameters. Second-order corrections for the energy dispersion of the excitations are presented
in a strong-coupling expansion for the first time, and successfully applied in the data evaluation.

2. Structure

Monoclinic KCuCl3 crystallizes in the P21/c space group, with lattice constants a = 4.029 Å,
b = 13.785 Å, c = 8.736 Å, and β = 97.20◦ [3]. The structure consists of double chains of
edge-sharing CuCl6 complexes, which run parallel to the short axis a, occupy the edges and
the centre of the bc-plane and are separated from each other by K+ cations (figure 1). The
Cu coordination is of the distorted octahedral type common to the Jahn–Teller Cu2+ cation,
resulting in complete orbital momentum quenching. Well localized spins S = 1/2 are expected
to reside at the Cu site in a 3dx2−y2 configuration whose lobes point to the vertices of a fourfold,
nearly planar Cl environment corresponding to the base of the distorted octahedra. Magnetic
interaction between the Cu2+ is provided in a first approximation by superexchange pathways
through the 3p and 3s orbitals of the Cl− anions [4]. Appreciable exchange coupling within the
double chains may be expected between neighbouring Cu which share common bridging Cl,
building nearly planar (Cu2Cl6)2− dimer clusters—a structure often assumed by Cu2+ pairs [5].
Due to the octahedral distortion, additional intrachain interactions perpendicular to the dimer
planes are not likely to play a major role. The same holds for eventual interchain interactions,
which involve at least two anion pathways Cu–Cl–Cl–Cu and may thus be expected to provide
smaller couplings with respect to the Cu–Cl–Cu dimer exchange. In the light of the above
considerations, the magnetic properties of KCuCl3 are possibly captured by an S = 1/2
Heisenberg model consisting of dimers weakly interacting together, as first suggested in [6]
and rationalized in [7]. Since the compound shows a singlet ground state, an AF intradimer
coupling has been proposed [6,8]. Whereas a square-planar coordination featuring 90◦ bonds
through orthogonal 3p orbitals would be weakly ferromagnetic (see [9] for the Cu–O–Cu case),
slight distortions towards linear bondings are known to increase the importance of the AF
exchange term according to the Goodenough and Kanamori rules. The ∼96◦ bond angle of the
nearly planar (Cu2Cl6)2−dimer is assumed to be in this limit, providing AF intradimer exchange
J < 0. An inspection of additional pathways within the double chains indicates the possibility
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Table 1. Microscopic contributions to the effective exchange constants Jij in KCuCl3; cf. figure 1.
Suggested couplings between dimers i and j are listed as three-ion and four-ion pathways A–B–C
(–D), following the criteria and the notation explained in the text. Bond distances R (Å) and bond
angles 
 (deg) are derived from [3] in the form |RAB |– 


ABC–|RBC | (– 

BCD–|RCD |).

Jij Rij (l.u.) Jij,µν Pathways, distances and angles

Ja (1 0 0) Jij,11 Cu{i, 1}–Cl2{i}–Cu{j, 1} · · · –Cl3{j}– · · ·
2.267–100.6–2.941 3.113–94.5–2.323

Jij,22 Cu{i, 2}–Cl2{i}–Cu{j, 2} · · · –Cl3{j}– · · ·
2.941–100.6–2.267 2.323–94.5–3.113

Jij,12 Cu{i, 1}–Cl3{i}–Cu{j, 2} · · · –Cl3{j}– · · ·
2.314–90.9–3.113 3.113–90.9–2.314

Ja2c (2 0 1) Jij,12 Cu{i, 1}–Cl2{i}–Cl2{j}–Cu{j, 2}
2.267–153.5–3.796–153.5–2.267

Jabc (1 1/2 1/2) Jij,22 Cu{i, 2}–Cl3{i}–Cl1{j}–Cu{j, 2}
2.322–149.9–3.843–148.7–2.248

(1 1̄/2 1/2) Jij,11 Cu{i, 1}–Cl1{i}–Cl3{j}–Cu{j, 1}
2.248–148.7–3.843–149.9–2.322

J (0 0 0) Jij,12 Cu{i, 1}–Cl3{i}–Cu{i, 2} · · · –Cl3{i}– · · ·
2.322–95.9–2.314 2.314–95.9–2.322

of weak interdimer exchange Ja along ±(1, 0, 0) lattice units (l.u.), involving the elongated
apical distances of the octahedra rather than the short basal distances. Suggested Cu–Cl–Cu
correlations on the length scale of the axis a are reported in table 1, in a notation corresponding
to the model approach of section 3. Regarding exchange between different double chains, the
terminal chlorines within the dimers may provide weak Cu–Cl–Cl–Cu pathways. These would
require rather direct overlap with bonding angles preferentially near to 180◦ and directions
possibly following the dimer planes. The Cu–Cl–Cl–Cu exchange paths featuring bonding
angles bigger than 148◦ over distances on the scale of a are listed in table 1. They provide
qualitative support for a Ja2c-interaction which would couple dimers along ±(2, 0, 1) l.u.
within the same sublattice. Also, they suggest a star-like coupling Jabc between edge dimers
and centre dimers, following the pathways ±(1, 1/2, 1/2) and ±(1,−1/2, 1/2). Both the
proposed Ja2c- and Jabc-couplings are perpendicular to the (1, 0,−2) direction, which in turn
is nearly normal to the dimer planes (figure 1). Other superexchange paths for either interchain
or intrachain couplings were found to involve less favourable configurations with respect to
the criteria expressed above. As will be demonstrated according to the experimental results
in section 4, the exchange interactions described lead to the effective dimer coupling scheme
which correctly accounts for the experimental observations. The resulting model parameters,
to be formalized in section 3, are in accordance with the relevant couplings presented in [7]
after INS investigations along the crystallographic directions a∗, b∗, and c∗. In a recent work,
similar conclusions were proposed based on measurements in the a∗c∗-plane [10]. Improving
on previous studies on KCuCl3, we conclusively support at leading order not only the validity
but also the completeness of the effective three-dimensional couplings resulting from the above
dimer approach.

3. Excitations

Expectations for the energy dependence of the singlet–triplet excitations can be readily obtained
from a strong-coupling expansion applied to the unperturbed dimer basis; see [11, 12] for
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Figure 1. A schematic view of the structure and the magnetic interaction paths in KCuCl3;
cf. table 1. Left: (Cu2Cl6)2− dimers are located in the basal planes of distorted, edge-sharing
octahedra. These are stacked in double chains along the a-direction. Right: the double chains
occupy the edges and the centre of the bc-plane. Magnetic interactions J, Ja2c, Jabc (in the plane)
and Ja (out of the plane) determined by the tilted dimer arrangement in the unit cell are accordingly
highlighted.

recent examples. The energy scale is provided by H(0) from equation (1), yielding localized
S = 0 → S = 1 dimer transitions at

ε(0) = −J J < 0. (2)

First-order correctionsH(1) introduce a dispersion which corresponds to the Fourier transform
of the additional weak couplings between the dimers:

ε
(1)
± (q) = −{Ja cos(2πqh) + Ja2c cos(4πqh + 2πql)± 2Jabc cos(πqk) cos(2πqh + πql)} (3)

where the wavevector q = (qh, qk, ql) is expressed in reciprocal-lattice units (r.l.u.), and
Jij are the effective exchange constants introduced in section 2. The periodicity of the
dispersion relation is indicative of the interdimer couplings involved, the amplitude depends
on the nature and strength of the respective exchange constants. Two excitation branches
ε±(q) = ε(0) + ε

(1)
± (q) are generally expected in KCuCl3 as required by the presence of two

dimers in the chemical unit cell (figure 1). The exclusive singlet–triplet correlation function
S±(κ, ω) provides at first order expectations for their intensities:

Sαα± (κ, ω) =
(

1

2
sin

(
κ
R1

2

)
± 1

2
sin

(
κ
R2

2

))2(
ε(0) − ε

(1)
± (q)

|J |
)
δ(h̄ω − ε(0) − ε

(1)
± (q)) (4)

with α = {x, y, z} labelling the spin coordinate, κ = q + τ the scattering wavevector. The
expression for S±(κ, ω) presented above is fully isotropic in spin space. In equation (1) and
in the following analysis, exchange anisotropy is not incorporated. This is justified by the
true S = 1/2 nature of the magnetic interactions in KCuCl3, and supported by detailed static
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experiments [16]. R1 = 0.48a + 0.10b + 0.32c and R2 = 0.48a − 0.10b + 0.32c in equation
(4) correspond to the intradimer spin separation at the edges and in the centre of the bc-
plane, respectively (figure 1). The resulting characteristic intensity envelope in the correlation
function has been presented in our previous investigations [7]. It originates from the extended
dimer nature of the magnetic excitations—involving two separate spins on each dimer—and
implies for the present work that on the a∗c∗-scattering plane (where κR1 = κR2) only the
ε+-branch is visible, whereas on the b∗c∗-scattering plane both ε+ and ε− are generally visible.
Accordingly, we will refer to the symmetry a∗c∗-plane, and to the generic b∗c∗-plane.

In the following we concentrate on the energy dependence of the dispersion relation with
two aims: first, to confirm the validity of the interdimer coupling scheme corresponding to
equation (3) on the basis of additional experimental evidence; second, to present and apply
second-order corrections for the singlet–triplet dispersion relation. The first aim results from
the observation that our previous measurements were performed parallel to the crystallographic
axes, fulfilling a compromise between energy and intensity determination (equation (4)). These
directions are not sufficient to guarantee the uniqueness of the interdimer coupling scheme. A
conclusive extension of the experimental data is presented in section 4, tailored to particularly
significant energy directions in reciprocal space. The second aim pursues the refinement of
the microscopy behind the effective dimer parameters, as listed in table 1. At first order,
different combinations of single-ion couplings in H(1) are easily shown to generate the same
interdimer coupling. Between dimer i and dimer j the most general microscopic interaction
involves four different and competing exchanges, according to the four possible spin–spin
combinations. They all enter Jij as a weighted average, following

Jij = 1

2
(Jij,11 + Jij,22 − Jij,12 − Jij,21) (5)

in a notation already introduced. The first two contributions on the right-hand side of equation
(5) correspond to a microscopic ladder-like coupling scheme; the last two contributions apply
to a zigzag-like case [13, 14]. Their opposite signs are imposed by the relative phases of
the single spins involved. In the case of competition between these interactions Jij ∼ 0,
and the excitations remain localized [15]. Reflecting the spirit of the dimer approach, the
information determined from the model parameters at leading order is insensitive to such
single-ion correlations, but rather provides the effective dimer correlation. Only in a second-
order expansion can the single-ion contributions in principle be isolated from the dispersion
relation, according to

ε
(2)
± (q) = − 1

J
{J 2

a + J 2
a2c + 2J 2

abc} +
1

2J
{ε(1)± (q)}2

+
1

J
{F 2

a + F 2
a2c + 2F 2

abc −G2
a cos(2πqh)−G2

a2c cos(4πqh + 2πql)

∓ 2G2
abc cos(πqk) cos(2πqh + πql)} (6)

with

F 2
ij = 1

4
(Jij,11 − Jij,22)

2 +
1

4
(Jij,12 − Jij,21)

2

G2
ij = 1

4
(Jij,11 − Jij,22)

2 − 1

4
(Jij,12 − Jij,21)

2.

(7)

ε
(2)
± (q) given above consists of a constant term and a higher Fourier term, both depending

on the effective dimer couplings already introduced, plus a basic Fourier term containing the
details of the single-ion couplings after equation (7). The notation refers to table 1, which
provides the microscopic data corresponding to the proposed single-ion couplings. Although
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Table 2. Values of the dimer exchange coupling constants for KCuCl3 at T ∼ 2 K. The parameters
are fit results obtained using a model explained in the text, considering first-order (O(1), left) and
second-order expressions (O(2), right). Errors correspond to one standard deviation; the calculated
gap + is given in the bottom line.

Jij Rij (l.u.) O(1) (meV) O(2) (meV)

Ja ±(1 0 0) 0.217(7) 0.210(5)
Ja2c ±(2 0 1) 0.382(8) 0.340(5)
Jabc ±(1 1/2 1/2) −0.417(5) −0.372(4)

±(1 1̄/2 1/2)

J (0 0 0) −4.273(6) −4.287(4)

+ 2.84(3) 2.72(2)

KCuCl3 belongs to the limit where these single-ion corrections are severely subordinated to
the dominant coupling J (table 2), we will show that the overall effect determined by ε(2)± (q)

significantly improves the quality of the data analysis.

4. Measurements

Inelastic neutron scattering investigations were performed at fixed final energyEf = 4.7 meV
on the cold three-axis spectrometers IN14 (ILL, Grenoble) and DrüchaL (SINQ at PSI,
Villigen), operated in the constant-κ mode under standard focusing conditions. Data were
collected at T ∼ 2 K in the a∗c∗- and b∗c∗-planes, respectively. With respect to the gap
+ = 31.1 K (after [16]) the chosen temperature T � + ensures that the magnetic system is
in its ground state. The energy determination at a given κ is the result of Gaussian fits to the
observed profiles. Standard errors in their centre positions typically amount to less than a few
10−2 meV, and never exceed the symbol size adopted in the graphical representation of the
dispersion relation (figures 2 and 3).

In figure 2, selected directions on the symmetry a∗c∗-plane are presented in a reduced
scheme representation. Points measured in different zones have been arranged to build a
continuous path in reciprocal space, according to the dimer lattice symmetry. Starting from
the known dispersion relations along (0, 0, x) and (x, 0, 0) (panel I and III, respectively), new
selected directions are introduced and evaluated at first order in the light of different interdimer
coupling schemes (dotted, dashed–dotted and dashed curves) to be explained in the following.
The scheme corresponding to equation (3) (dotted curve) is supplemented by the second-order
corrections derived in equation (6) (continuous curve). As anticipated in section 2, this scheme
will completely account for the experimental observations. However, from a dimer point of
view, e.g. neglecting the microscopy of the exchange paths and considering the dimers as
featureless magnetic units, there is no reason to prefer the strongly directional couplings of
equation (3) with respect to other coupling combinations. As exemplified for the exchange
path Ja2c, the following substitutions can be proposed:

Ja2c cos(4πqh + 2πql) → Ja2 cos(4πqh) + Jc cos(2πql) (8)

Ja2c cos(4πqh + 2πql) → J ′
a2c cos(4πqh + 2πql) + J ′

a2c̄ cos(4πqh − 2πql) (9)

where the right-hand side in equations (8) and (9) is meant to replace the appropriate Fourier
term in equation (3), as indicated. The substitution scheme corresponding to equation (8)
splits the original exchange path Ja2c into two separate exchange paths Ja2, Jc; the substitution
scheme corresponding to equation (9) considers a symmetric extension J ′

a2c, J
′
a2c̄: both are
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Figure 2. The measured energy dispersion (full points) of the magnetic excitations in the symmetry
a∗c∗-plane of KCuCl3 at T ∼ 2 K. First-order perturbation calculations for different interdimer
coupling schemes are shown as dotted, dashed–dotted and dashed lines, according to models
described by equations (3), (8) and (9), respectively. Second-order corrections (continuous lines)
refer to equation (6).

irrespective of the preferred planar orientation of the dimers in the unit cell, as discussed.
Nevertheless, the fits resulting on imposing the conditions Ja2 = Jc and J ′

a2c = J ′
a2c̄

in equations (8) and (9), respectively, are easily shown to account for the totality of the
measurements presented in [6, 7]. This is due to the fact that only projections of the original
Ja2c-coupling along the crystallographic axes enter the directions investigated, as illustrated
in the present work for (0, 0, x) and (x, 0, 0) in panel I and panel III of figure 2. Obviously
however, selected directions in reciprocal space allow one to uniquely determine the correct
interdimer scheme. The new results along (x, 0, 0.5) presented in panel II discard the scheme
corresponding to equation (8) (dashed–dotted curve), which does not feature the correct
modulation, but cannot discriminate between equation (3) (dotted curve) and equation (9)
(dashed curve). To resolve this issue, scans along mixed directions are reported in panels IV
and V: the scheme corresponding to equation (9) is found to be inappropriate to describe the
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Figure 3. The measured energy dispersion (full points) of the magnetic excitations in the generic
b∗c∗-plane of KCuCl3 at T ∼ 2 K. Lines correspond to fits to a first-order (dotted) and second-order
(continuous) dimer perturbation model, as described by equations (3) and (6), respectively.

experimental observations, too. The points presented in panel V cover a direction perpendicular
to both the Ja2c- and Jabc-couplings of equation (3), which as a result do not contribute
to the dispersion. The observed modulation can only be caused by additional couplings,
and is consistently explained by Ja as predicted from equation (3). The bandwidth of the
dispersion along (x, 0,−2x) is thus a direct measurement of |2Ja|. Investigations on both the
a∗c∗- and b∗c∗-planes confirm the uniqueness of Jabc-coupling with respect to other coupling
combinations, as well.

In the generic b∗c∗-plane (figure 3) two excitation branches are generally expected (panel
I and II). Phase-coherent and antiphase-coherent excitations between edge and centre dimers
both enter S±(κ, ω) at once according to equation (4). Their energy difference depends on the
couplings connecting the two sublattices, which after the scheme of equation (3) reduce to

|ε+(q)− ε−(q)| = |4Jabc cos(πqk) cos(2πqh + πql)|. (10)

Following the peculiar q-dependence in the above expression, degeneracy of the two branches
can be selectively imposed either for qk = ±0.5 or for (2qh+ql) = ±0.5, modulo a reciprocal-
lattice vector. Both features have been successfully tested in panels III and IV. For the particular
set of points presented in panel IV, no dispersive behaviour is expected, since Ja and Ja2c

are kept constant as well. We interpret the results presented in figure 2 and figure 3 as
the conclusive verification at leading order of the effective coupling scheme derived in the
previous section, and formalized in equation (3). Besides, this discussion demonstrates that
the magnetic properties in KCuCl3 are three-dimensional in nature because of the presence
of three noncollinear interdimer couplings Ja, Ja2c, Jabc additional to the dominant intradimer
coupling J . Considering the moderate Ja-contribution to the energy dispersion in panel V of
figure 2, excitations delocalize, however, preferentially on the plane determined by the tilted
arrangement of the dimers in the cell (figure 1), which involves the Ja2c- and Jabc-couplings.

The fitted model parameters from equation (3) including second-order corrections from
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Figure 4. The calculated energy dispersion of the magnetic excitations in the symmetry a∗c∗-plane
of KCuCl3 at T ∼ 2 K; cf. equations (3) and (4). Minima correspond to q = (0, 0,±1) (r.l.u.),
with a period τ = (1, 0, 0) along a∗ and τ = (0, 0, 2) along c∗. Contour lines separate 0.2 meV
energy steps; straight lines refer to the reduced paths shown in figure 2 (panels I–V).

equation (6) are reported in table 2. The AF intradimer coupling J ∼ −4.3 meV is one order
of magnitude bigger than the interdimer couplings, largely fulfilling the validity criteria of the
model approach. Its strength corresponds to ∼50 K in good agreement with a dimer quantum
Monte Carlo analysis of the susceptibility χ over the whole temperature range [8], yielding
|J | = 49.2 K as best fit. The weak interdimer couplings in KCuCl3 give rise to appreciable
bandwidth because of their additive contributions to the dispersion relation. After equations (3)
and (4), effective phase correlations are interpreted as ferromagnetic between dimers belonging
to the same sublattice (Ja > 0, Ja2c > 0), and antiferromagnetic between dimers of different
sublattices (Jabc < 0). In the symmetry a∗c∗-plane, minima are observed at q = ±(0, 0, 1)
and magnetic equivalent points κ = q+τ , which are obtained by translation τ along a∗ or along
2c∗ (figure 4). The quantitative determination of the coupling constants favourably compares
with previous RPA results, with overall discrepancies in the numerical values smaller than 0.1
meV or ∼2% on the scale of |J |. The effect of the second-order expansions clearly improves
the quality of the model description, in particular around the minima of the dispersion relation
(continuous lines in figure 2, figure 3). A very weak additional effective coupling reported
in [7] is likely to originate from such higher-order corrections, and has not been included in
the present starting coupling set (table 1).

Different selected single-ion exchange configurations have been considered in the second-
order refinement procedure. The microscopic parameters from figure 2, figure 3 and table 2
correspond to the following couplings: Ja2c,12 (=−2Ja2c), Jabc,11 = Jabc,22 (=2Jabc), Ja,11 =
Ja,22 (=Ja), which are illustrated in figure 1. Values in brackets reproduce the effective dimer
couplings resulting from the given single-ion couplings, and are reported in table 2. The
gap calculated from the minimum of the dispersion relation ε(0) + ε(1) + ε(2) corresponds to
+ = 2.72(2) meV ∼ 32 K, in excellent agreement with high-field magnetization results [16].

5. Conclusions

We presented a complete neutron investigation of the Cu2+ S = 1/2 compound KCuCl3.
This unconventional magnetic insulator has a singlet ground state and shows gapped triplet
excitation modes of dimer origin. The nature of the observed excitations is three dimensional
in q-space, despite the lack of magnetic order in the ground state. This is explained by a
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severe imbalance in the strength of the exchange constants involved. Within the framework
of a dimer AF Heisenberg model, the dispersion relation of the excitations above the gap
has been successfully compared to detailed model predictions. Attention has been paid to
providing microscopic support to the effective model parameters. Since the unconventional
magnetic interactions in KCuCl3 are directly related to the low crystal symmetry, the exchange
constants have been critically discussed considering the structural coordination of the Cu2+

ions in the unit cell. In accordance with earlier investigations, KCuCl3 is interpreted as an
isotropic antiferromagnetic dimer compound, featuring weak interdimer couplings additionally
to a dominant intradimer coupling J ∼ −4.3 meV. The latter connects spin pairs along the
rungs of the double chains to build nearly planar Cu2Cl6 dimers. The relative orientation of the
dimers in the cell is such as to favour (2x, 0, x) and (x,±x/2, x/2) superexchange pathways.
An (x, 0, 0) exchange completes the effective coupling scheme within the model approach
derived in the text. The observed excitations confirm the validity of the above dimer scheme
and support, at leading order, its uniqueness within experimental accuracy. The single-ion
contributions to the effective dimer couplings considered have been generally presented in
terms of second-order expectations. The interactions discussed possibly apply to the parent
quantum systems TlCuCl3 and NH4CuCl3 as well [17], albeit at different coupling strength
ratios. In the light of the comprehensive experimental characterization of the title compound,
a comparison with ab initio LDA calculations would be very interesting.
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